Cannabis & Cannabinoids

400+ compounds [60 active cannabinoids] in marijuana plant (cannabis sativa)

Cannabinoids most concentrated in stalks, leaves, seeds of plant, & in oily resin of F plant

Delta (9)-tetrahydrocannabinol (THC) is most potent cannabinoid Others: delta (8)-THC, cannabinol & cannabidiol

THC content in MJ has risen 7- to 15- fold since 70s: 150+ mg/join in 2000

Most studies of THC involve 10-25 mg doses common in 1970s Smoked MJ also has tars & aryl hydrocarbons (carcinogens)

THC Pharmacokinetics

- 50% of dose absorbed in lung; less in GI tract
- 1st pass effect w/Gl absorption → lower THC levels
- Tissue distribution rapid: fat soluble so [fat] influences
- Entry into lipid [fat]-rich brain areas [cortex, amygdala/hippocampus, sensory, & motor] rapid
- Fatty tissue/brain levels peak 4-5 days post dose
- Half life of single dose of THC in blood is 4-6 hr
- BUT: Slow fat release & redistribution to tissue [brain etc], so elimination half life is much slower
- Liver metabolism [11-OH-THC major metabolite]
- Renal and gut excretion
- Poor correl'n of intox. & plasma/urine THC levels
- Urine levels + 1-2 d after 1 joint; 30-42 d if chronic

Cannabinoid Receptors: Discovery and Subtypes

- Present in brain cell membranes, as discovered in binding assays in 1988 by Devane et al.
- Two membrane-linked cannabinoid receptors now identified:
 - CB1 [in brain & peripheral nerves]
 - CB2 [in spleen & immune/inflammatory cells]
- Binding to CB1 and CB2 receptors activates intracellular G proteins & protein kinases, and inhibits adenyl cyclase, and then alters gene expression in the cells

Cannabinoid Receptor Binding Compounds In Brain Tissue

- Normal brain found to make its own receptor binding compound, arachidonylethanolamide, named anandamide [Sanskrit, "internal bliss"] in 1992
- Normal brain makes several other such endogenous ligands that bind to CB1 and CB2 receptors, acting just like THC
- They are chemically related to prostaglandins, i.e. fatty molecules involved in inflammatory responses

CB1 & CB2 Receptors: Locations & Effects

Region THC and anandamide effect

spinal cord analgesia [dynorphin and leu-enk released]

medulla anti-emesis

/TA release

cerebellum incoordination

pasal ganglia slowed movement @ low [THC]

increased movem't /catalepsy- hi [THC] NO?

halamus altered movement perception

increased appetite, hypothermia NO?

impaired declarative memory

reduced anxiety [low dose]

increased anxiety [hi dose]

reduced acid secretion, slow motility

alters cytokines, inhibits T cell activation

aut

pleen/immune

nypothalamus

nippocampus

amygdala, PFC

Cannabinoids: Effects on other transmitters

Anandamide enhances DA release in PFC and VTA in naloxone-inhibitable fashion: reinforcing

Possible role of endogenous cannabinoid and opiate systems in motivation & reinforcement; potential for therapeutic effect in schizophrenia, depression, etc?

Interaction with Acetyl choline & GABA systems

CB1 activation may play a role in alcohol tolerance

Cannabis & Cannabinoids: Intoxication

Vasodilation [low BP, red eyes] & tachycardia

Low dose [2.5-300 mg] -> decreased anxiety, alertness, depression and tension, and increased sociability (if taken in friendly surroundings) starting in minutes and lasting 2-4 hr.

Cannabis can produce

- dysphoria [panic, paranoia, psychosis]; risks: high dose, naïve user, anxiety schizophrenia,
- altered perceptions [enhanced emotional effects] ,
- rapid time perception, and occasionally
- hallucinations

Impaired recall [7+d] & motor performance at low [5-10 mg] doses Increased MVAs, MVA deaths, traumatic deaths, & pilot errors for 24+ hr after dose

Cannabis & Cannabinoids: Chronic Toxicity & Dependence

No reported deaths

Euphoric tolerance [d/t receptor down-regulation?]

Withdrawal [craving for marijuana, decreased appetite, sleep difficulty, aggression, anger, irritability, restlessness, and strange dreams] occurs after 1 joint/d for > 10 days [involves opiate system/preproenk.]

Increased rates of bronchitis, COHgb, lung CA?

Memory and other cognitive problems resolve within 6-12 weeks after cessation of chronic, very heavy use (5,000+doses)

Medical uses of cannabinoids

Marinol: FDA approved for treatment of appetite loss and fatigue in cancer and AIDS patients

Requirements for cannabis or CB1 receptor agonists to have therapeutic potential:

- Efficacy of clinical significance in selected patients & conditions; debate re: unique efficacy
- Freedom from addiction, psychomotor, and other significant risks
- Minimal drug interactions

Stimulants: Cocaine and Amphetamines

Cocaine: forms & absorption

Many alkaloids in coca, chewed by Andeans for centuries

- Absorption via buccal mucosa (oral tissue)
- Gastric acid inactivates cocaine, yielding low blood levels after swallowing

Cocaine easily purified alkaloid, typically as white HCl salt

- Nasal snorting: initial dose rapidly absorbed across venous plexus in nose
- Repeated doses less well absorbed due to cocaine-induced plexus vasoconstriction
- Intravenous dosing yields much higher blood levels

After cocaine HCl extracted with water/ether or removed by boiling with NaHCO₃ [baking powder/sodium bicarbonate], get crystalline cocaine hydroxide, or "free base" cocaine. Cracks when heated

- Cocaine HCl not volatile, but cocaine base is volatile on heating
- Volatility leads to high cocaine levels in heated vapor→ rapid absorption in lung after free base/crack smoking

Amphetamines: forms & absorption

Most are oral pills (dexedrine, methamphetamine, methylphenidate)

- Low dose use appears to have little addictive potential (e.g., Ritalin)
- High dose use has moderate addictive potential

Methamphetamine (crystal meth, ice)

- Nasal snorting: initial dose rapidly absorbed across venous plexus in nose
- Little vasoconstriction, so repeated use yields good absorption
- Intravenous dosing yields much higher blood levels

Smoked

- Usually methamphetamine
- Volatility leads to high amphetamine levels in heated vapor > rapid absorption in lung after smoking

Cocaine Pharmacokinetics

- Tissue distribution rapid: blood flow & [fat] influence
- Rapid brain entry [cortex, amygdala] esp after IV and crack
- Enzymatic breakdown via hydrolysis by serum esterase
- Half life of cocaine in blood is 4-6 hr
- Liver metabolism [benzoylecognine (BE) major metabolite, half life 9 hrs]
- Renal excretion
- Urine levels of BE pos 1-2 d after single IV dose and 7-14 d post chronic high-level use

Cocaine Receptor: Dopamine Transporter

- Cocaine receptor shown to be dopamine [DA] transporter [DAT], which mediates most of its behavioral effects
- DAT binding by cocaine thus results in dose-dependent increases in DA in synaptic cleft, enhancing DA effects
- DAT concentrations highest in motivational (VTA, Nucleus Accumbens) and motor control (caudate, putamen) areas of brain
- Mutations in DAT gene renders animals unresponsive to psychomotor stimulant properties of cocaine, but hyperactive at baseline: hyperactive behavior
- Cocaine also has high affinity for reuptake sites for serotonin and norepinephrine

Amphetamine: DA mechanisms of action

- Blocks DA reuptake at dopamine [DA] transporter [DAT
- Increases DA release from pre-synaptic sites

Cocaine: Pharmacodynamic Effects

Local anesthesia [nasal, oral mucosa] and vasodilation Marked euphoria associated with rate of DAT blockade in N. Accumbens

Reinforces self-administration behavior, leading to repeated use Sensitization: re-exposure enhances effect→can lead to behavioral pathology e.g., paranoia, hallucinosis Unclear if tolerance to reward effects develops in humans

Increased physical activity and parkinsonian tremor (lasts 3+ months)

Mild tachycardia (10/min) and hypertension (20/10)

Coronary vasodilation, then vasoconstriction; also platelet activation and coronary thrombosis, increasing risk of stroke and MI

Kindling and seizure induction Sleep disturbance

From Bozarth and Wise (1985) "Toxicity associated with long-term intravenous heroin and cocaine self-administration in the rat"

Fig 2. Daily intake of drug for typical subject self-administering cocaine hydrochloride, 1 mg/kg per infusion

HOW DRUGS AFFECT DOPAMINE LEVELS

Cocaine blocks the normal absorption of dopamine. As a result, dopamine accumulates in the synapse, where it stimulates the receiver cell.

Amphetamines stimulate excess release of dopamine, overwhelming the processes of reuptake and enzyme breakdown.

Different Effects Same Pathway

Time, May 5, 1997

Amphetamine: Pharmacodynamic Effects

Marked euphoria associated with rate of DA increase Reinforces self-administration behavior, leading to repeated use Sensitization: re-exposure enhances effect→can lead to behavioral pathology e.g., paranoia, hallucinosis, automatisms lasting days

Tolerance develops to euphoric effects

Increased physical activity and parkinsonian tremor (lasts 3+ months)

Mild tachycardia (10/min) and hypertension (20/10)

Coronary vasodilation, then vasoconstriction; also platelet activation and coronary thrombosis, increasing risk of stroke and MI

Neurotoxic at high doses; can last in monkeys up to 3 yrs.

Long-term amphetamine use increases dendritic spines in nucleus accumbens cells

S = saline A= amphetamine

Cocaine and Amphetamines: Withdrawal

Controversial, even following high-dose use

- Much of effect may be due to sleep deprivation, not drug

Some reports of 3 phases: crash, depression, recovery

Drug Abuse Pharmacology: Summary

- Dose, drug, route, and metabolism affect drug blood and tissue levels
- Binding to specific receptor starts intracellular chain of events, producing specific effects similar to those produced by natural ligands
- Chronic exposure and genetics alter individual responses to drugs and dependence symptoms
- Reinforcement pathways involving DA critical to repetitive drug use